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INTRODUCTION 

Criteria for wind-turbine noise immissions should address all aspects of the receiving pressure level including 
magnitude and character.  For wind-turbines this should include at least the overall A-weighted level related to 
annoyance, possible spectrum imbalance, infrasound/low frequency noise (LFN), tonal issues, and any other unusual 
character issues such as occasional “thumping."  Space limitations and the current extent of scientific knowledge of 
this subject do not allow for a full discussion in this paper, although each aspect will be touched on.  The main focus 
is criteria to minimize annoyance from wind-turbine immissions. 

Hessler Associates, Inc. has worked on over 70 wind-turbine projects over the last decade and has published a 
peer-reviewed journal paper recommending a design goal of 40 dBA or less at residences coupled with a maximum 
legal criterion of 45 dBA, all based mostly on observations and experience.1 Schomer and Associates, Inc. is a 
recognized world-wide expert in community noise and also has worked on numerous wind-turbine projects--about 
equally for project developers and anti-project advocacy groups.  Schomer, using a wholly different approach than 
Hessler, recommends a design goal of 39 dBA at residences to minimize annoyance. 

 This paper presents measured data of a typical wind farm in the American Midwest, provided by Hessler and a 
discussion of those data and some data analyzed along with a discussion by Schomer of some Western data, both 
insofar as they pertain to  aspects of immissions criteria. 

The purpose of this paper is to compare and contrast the views of the two authors. Note in the sections that 
follow, the material of a particular author represents the views of that author, and not necessarily the views of both 
authors.  However, the conclusions do reflect the views of both authors. 

TYPICAL WIND FARM IMMISSION SPECTRA AND LEVELS – HESSLER 

Figure 1 presents data from a very typical wind farm composed of (90) 1.8 MW wind-turbines dispersed over 
approximately 88 sq km (34 sq miles) of flat farmland with nearly 500 residences.  The rotor diameter and hub 
height are 90 m and 80 m, respectively.  The data presented are from a rigorous certification measurement survey 
where sound levels and spectra were measured over three periods during midday (12 pm – 2 pm), evening (6 pm – 8 
pm) and night (10 pm – 12 am). 

 The project layout was designed by the owner using a minimum buffer distance of 381m (1250 feet) from the 
closest turbine to any residence.  Measurements were made at four “worst case” locations that were miles apart but 
had both the closest and the largest number of turbines adjacent to a residence.   

Measurements were performed with an off-the-shelf type 1 precision sound level meter with its frequency range 
extended down to the 0.4 Hz one-third octave-band, although the rated frequency response of the microphone is ± 1 
dB from 5 Hz to 20,000 Hz.  A separate test comparing this off-the-shelf system side-by-side to a custom designed 
system with a proven accuracy of ± 1 dB from 0.1 Hz to 20,000 Hz demonstrated that the off-the-shelf sound level 
meter system measured accurately down to the 2 Hz one-third octave-band--better than the manufacturer's published 
rating.  Levels below 2 Hz in Figure 1 show microphone roll-off.  

Measuring low-frequency sound in the presence of wind at a height of 1 to 1.5 m above grade is problematic as 
will be shown.  The microphone was protected with a 175 mm (7 inch) diameter foam windscreen with 20 ppi 
porosity to minimize pseudo noise and wind-generated pulsations. 

The owner was quite cooperative, and measurements were made for 10-minute periods with all turbines 
operating followed by the same measurements with all contributing turbines shut down to obtain ON/OFF 
measurements. The plotted data are the arithmetic average of the median spectra and L50 during the twelve ON and 
twelve OFF 10-minute periods.  Three measurement periods at each of four residences yielded twelve ON/OFF 
results. 

Wind conditions varied, but the average wind speed at the 80 m hub height was 9 m/s (7.5 to 11.6 m/s range), 
and at the 1 m microphone height, the average wind speed was 2.9 m/s (1.7 to 4.4 m/s range). 

The measured A-weighted levels shown on Figure 1 are 43.6 and 39.3 dBA, ON and OFF, respectively.  
Applying the standard background correction calculation yields an average noise immission from the turbines of 42 
dBA. 
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Community Response to this Wind Farm 

The community response to the example wind farm noise that encompasses 489 non-participating residences and 
42 participating residences (residents leasing land for wind turbine installation) can be described as minimal adverse 
response with no claims of health issues.  To our knowledge, there are continued complaints from two residences 
that opposed the project from the beginning, but no other complaints in four years of operation (2009 through 2012).  
It is not known how many residents, if any, would give a negative response in an area-wide survey or questionnaire, 
but we can certainly conclude that the percentage of highly annoyed residents is not large. 

ANALYSIS AND CONCLUSIONS FROM DATA – HESSLER 

A-weighted Criteria 

The resulting community response to this wind farm and many others like it leads us to reaffirm our 40 dBA 
design goal and 45 dBA criteria recommendations given in Hessler and Hessler (2011).  When developers are able 
to lay out the project with our modeling assistance, i.e. space permitting, experience at every such site is no adverse 
response.  When space is more restrictive, a number of residents will experience higher levels than 40 dBA, but 
none higher than 45 dBA.  Since criteria must be met, contingency or safety factors are often applied with the result 
that the actual immissions level falls between 40 and 45 dBA.  The example data set above had an average of 42 
dBA at the closest turbine to receptor locations.  Hessler believes this is exactly the result desired--a reasonable 
balance between protecting the acoustic environment weighed against an environmentally friendly source of power 
generation. 

We should point out that the example community is made up of quiet, rural farmland, and when winds are calm 
and still (i.e., when there is no wind at ear height and no visible movement or audibility of high elevation tree leaf 
and branch coverage) the residual LA90 drops to the low twenties usually in the early morning hours.  Some anti-
project consultants continue to erroneously assert that a 40-45 dBA sound imposed upon such an environment (a 20-
25 dBA increase) creates a huge impact. As the following shows, this is not the case.  It is recognized that wind 
shear and topography effects reduce ground level wind speed below hub height speed, but those factors never reduce 
wind speed to calm and still conditions. 

Schomer has analyzed data for long-term measurements with repeated samples with turbines on and off over the 
past seven months. These data show that the largest difference in sound level between these two conditions is about 
10 to15 dB in a very quiet rural setting. This difference occurs mainly during the night and mainly during the 
summer and during these times the ground winds frequently have been observed to be less than 0.5 m/s. Although, 
winds at microphone height were less than 0.5 m/s, wind at hub height was sufficient for near or full power and yet 
the 10 to 15 dBA difference was maintained.  For the example site, Figure 1, the largest delta between the twelve on 
and off measurements was 9 dBA. 
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FIGURE 1. ON/OFF sound level spectra and overall levels averaged over three measurement periods each at four locations (12 

ON/OFF data sets) at a typical American Midwest wind farm. 

G. Hessler and P. Schomer

Proceedings of Meetings on Acoustics, Vol. 19, 040152 (2013)                                                                                                                                    Page 3



  
 

Tonal Character 
 

The data in Figure 1 clearly shows a tone (unusual for wind turbine sites) in the 160 Hz band, and this tone is 
audible at the four measurement locations; more prominently at one than at the others.  Our work over many years 
has given very good results using the definition of a “pure tone” as defined and calculated by the U.S. EPA method2 
to determine prominence by the increase between the tonal one-third octave-band compared to the average of the 
two adjacent one-third octave-bands.  This simple method allows the presence of faint to moderate tones, but if 
prominence is exceeded, then the tone must be addressed and rectified.  We recommend this expedient 1/3 octave 
band method for assessing tones in wind turbine emissions.   

 
Infrasound and the LFN Issue 

 
The ON/OFF measurements in Figure 1 show virtually no change in measured spectra at very low frequencies 

when measured using conventional techniques.  Figure 2 contains the same data overlaid with measured spectra of 
estimated pseudo noise in various wind-speed bins.  These estimates were collected in a quiet environment in the 
Mojave Desert with few man-made acoustic sources but at a site with lots of wind.  The site is shown in Figure 3 
where different windscreens have been tested as part of a volunteer ASA effort in support of a new standard.3   

Clearly, at the sample site used for measuring the data shown in Figure 1, the very low frequency data, measured 
both with turbines ON and OFF, are influenced by microphone pseudo noise for the 175 mm windscreen above 
grade, and these data do not represent infrasound or LFN from the wind turbines.  What we can deduce from the 
example site measurements is that whatever low-frequency noise there is that is attributable to the project, is very 
low in magnitude.  The measured data, even with pseudo noise effects, are similar to what one finds in a remote 
desert specifically chosen to have no man-made sources, and certainly no infrasound. 

Figure 4 below shows narrow band spectral measurements at three locations near a residence at a different wind 
turbine site. These measurements were made at a later date than the wind farm measurements described above, and 
these measurements use a better microphone wind screening system by placing the microphone on a ground plane 
covered with a hemispherical wind screen covered in turn with a turbulence screen.  The blue and green lines in 
Figure 4 show the results for two measurement positions outside the residence.  The difference between these two is 
their exposure to wind.  The position represented by the blue line was exposed to moderately high wind whereas the 
position represented by the green line was sheltered from the wind.  The smooth blue line exhibits the effects of 
wind even though these data were measured using the better microphone wind screening system.  Note that the real 
outside tonal infrasonic wind turbine data, shown as a green curve, are 10 dB below the wind influenced 
measurement.  The green line shows the wind-turbine blade passage frequency of at 0.7 Hz and harmonics at 1.4, 
2.1, 2.8, 3.5 and 4.2 Hz, clearly identifying the source to be from the nearby wind turbines.  Note that the very low 
frequency infrasound passes unimpeded through the house facade. 

This discussion illustrates the difficulty of measuring wind turbine emissions or immissions in the presence of 
wind.  
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FIGURE 2. ON/OFF sound level spectra and overall levels compared to measured pseudo noise for 175 mm (7 in) wind screen. 
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FIGURE 3. Comparative windscreen test setup in the Mojave Desert. 

 
 

 
FIGURE 4. Measurement using advanced signal processing and ground plane microphones at three locations near a wind farm.   

 
While the above and similar recently completed careful testing shows that infrasound from wind farms is present 

and detectable with proper instrumentation, the magnitude is extremely low.  For both sample sites, we have shown 
that infrasound levels are lower than one can measure in the remote Mojave Desert, so it is hard to make a case for 
any adverse effects from this low-level noise.  This result reaffirms our conclusions given 2 years ago at the Rome 
Wind Turbine Noise Conference.4 Conversely, the infrasound is tonal in nature, and that may have some influence 
on its potential effects on residents. The cadre of anti-project consultants claim catastrophic health effects due to 
infrasound and LFN but with little scientific support.  Objective researchers have not established a well-defined 
causal relationship between turbine emissions and adverse subjective effects. 

We can only conclude at this point in time (January 2013) that much more investigative study is required before 
the need for any low-frequency criteria, is established, and before any regulation on projects should be developed. 
Moreover, if any such regulations are developed, they will also need to surmount the difficulty of accurately 
measuring LFN outdoors as discussed above. 
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ANALYSIS AND CONCLUSIONS FROM DATA – SCHOMER 

General 

Schomer and Associates believes that three separate criterion are required to properly address the acoustic impact 
of wind farms: (1) the A-weighted day-night average sound level (DNL) to assess annoyance, (2) the WHO criterion 
to assess sleep disturbance, and (3) a methodology to assess adverse physiological effects.  

 
Annoyance 

 
The first of these, annoyance, is assessed quite well using the complete methods in ANSI/ASA S12.9 Part 4 and 

ISO 1996-1.  Both of these standards contain and recommend the A-weighted day-night average sound level (DNL) 
(ISO 1996-1 also recommends day-evening-night average sound level [DENL]), and both include a 10 dB 
adjustment for a quiet rural setting.  It is important to note that the 10 dB adjustment is not because the ambient is 
quieter in rural areas, but rather, it is there because of the greater expectations of peace and quiet in rural settings.5, 6  
Thus, given the design goal of DNL = 55 dB in residential urban or suburban areas, the design goal in quiet rural 
areas is simply the 55 dB design goal minus the 10 dB adjustment for a DNL of 45 dB.  Note that this derivation is 
not unique to wind farms; it would apply equally to many noise sources.  A DNL of 45 dB can, of  course, be 
realized in a variety of ways, two of which are: (1) an A-weighted level of 45 dB during daytime and a 35 dB A-
weighted level during nighttime, or (2) a constant 39 dB during day and night (24 hours per day), which makes the 
most sense for wind farms.   

A DNL of 45 dB should be viewed as a design goal much the same as is done for airports or highways.  
That is, the project must be designed to meet or better the design goal everywhere, but at the same time it must 

be recognized that noise prediction and measurement uncertainties dictate that sometimes the predictions will be 
exceeded.  The extent by which a prediction is exceeded is normally a function of the measurement duration and 
other factors.  In my view this uncertainty should be limited to 1 to 2 dB. That is I view the design goal to be 39 dB 
with a very strong recommendation not to exceed the criterion of 40 dB, and an absolute recommendation not to 
exceed 41 dB. The design must justifiably be for 39 dB with a margin of safety. 

In terms of wind-turbine sound propagation modeling, ISO 9613-2 is frequently used.  The above 1dB 
uncertainty tolerance attached to the 39 dB goal is consistent with general noise prediction requirements in the EU, 
and the requirements for the proper use of ISO 9613-2.  That is, a conservative, “downwind” prediction is typically 
required in the EU and definitely required for the proper use of ISO 9613-2.  With the use of conservative 
predictions, the small tolerance of 1 to 2 dB should be sufficient to accommodate all but the most unusual sound 
propagation situations.  

Sleep Disturbance 
 
No noise metrics or criteria are known by this author by which to assess the effects of wind-turbine noise on 

sleep.  However, from talking with and meeting with many who have testified that airport noise was awakening 
them revealed that typically, they awoke for natural reasons and then could not go back to sleep because of the 
noise.  Also, once one spouse was awake, it was common for the other spouse to awaken.  I see no reason to assume 
that effects differ between wind-turbines and airports or highways.  That is, I do not expect a great deal of verifiable 
noise-induced awakenings except if and when there are concomitant health effects.  So, as with other noise sources, 
the wind turbine noise generally should not present any sleep disturbance problems so long as the outdoor levels are 
lower than those recommended by WHO, i.e., maximum indoor nighttime-hour ALEQ of 30 dB. This should always 
permit a maximum outdoor nighttime ALEQ nearly always greater than 45 dB, but very occasionally between 40 
and 45 dB. 

Adverse Physiological Effects 
 

Recently, measurements were made at a small wind farm in Shirley, Wisconsin.  These measurements were 
made in the homes of three families who had abandoned their homes because they could not tolerate physiological 
results caused by the acoustic emissions of wind turbines.  This same story is being played out in a seemingly 
random fashion around the world.  Between Hessler Associates and Schomer and Associates, five wind farms are 
known to have reported problems similar to those at Shirley.  Perhaps 1% of wind farms have reported problems like 
those at Shirley; the remaining 99% have not documented such problems, and the reasons that a small percentage 
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have these problems are not known.  And within those wind farms that have these problems, only a small segment of 
the population is actually affected to the degree exhibited at Shirley, again on the order of perhaps 1% to 3% of 
households. 

From the residents of Shirley we learned: (1) most residents did not hear the turbines; residents said they could 
sense when the turbine was on, (2) the effects did not vary with changes in the orientation of the turbines with 
respect to the homes, (3) the general symptoms of those affected adversely by the wind turbine emissions were 
virtually the same as symptoms for motion sickness, and (4) afflicted residents were prone to motion sickness. 

This told us that (1) the resident had no noise annoyance because they did not hear any wind turbine noise, (2) 
the wavelength of the “sound” must be large—on the order of 100 m, and (3) there must be a mechanism by which 
this very low frequency infrasound can cause symptoms of motion sickness in people.  To this end, we found a study 
developed by the Navy showing that linear accelerations at 0.7 Hz were moving well into the nauseogenic region, 
and that the frequency that induces motion sickness at the lowest acceleration is approximately 0.2 Hz.   

The turbine model used in Shirley, the Nordex N-100, is among the largest ever installed in residential areas, and 
has a blade passage frequency of 0.7 Hz, and a corresponding rotor frequency of 0.23 Hz.  The 0.7 Hz was evident 
in the measurements during times when the turbines were at full power, but not when the turbines were throttled 
back.  The 0.23 Hz was only evident part of the time. 

At this point we must note that after over 4000 years of study, no one knows exactly what causes motion 
sickness or why some people are more affected than others.  In the following, we show only that it appears to be 
possible that an acoustic wave at 0.5 to 0.7 Hz can generate a similar signal in the brain as the signal generated by an 
acceleration at 0.5 Hz.  We do not expect any time soon to be able to predict who will and who will not be affected 
by low-frequency wind turbine emissions or the mechanism by which they occur any more than we can predict who 
is affected by motion sickness and who is not, and the mechanism by which people are affected by motion sickness. 
What we can show is that it appears quite possible for the acoustic emissions from wind turbines to produce this 
effect in some people. The following discussion analyzes the linear motion sensing function of the ear, and explains 
how the ear could respond to wind turbine emissions.  

In the ear, it is the otoliths that sense horizontal and vertical acceleration of the head, so the question then 
becomes: “what type of transducer is an otolith and is there a way that it can sense pressure emitted by the wind 
turbine in addition to its measuring acceleration?” The answer to this question requires research.  A theory for how 
this is possible is in development.  So, in this paper we are giving a brief sense of the theory and analysis.  Figure 5 
shows the ear.  We are concerned primarily with the inner ear which is shown in blue in this figure.  The inner ear 
includes the cochlea, which provides a spectral analysis of sound in the frequency range from roughly 10 Hz to 20 
kHz. The inner ear also contains the vestibular system, which provides for balance by measuring angular 
acceleration in three axes using the semi-circular canals (SCC), and by measuring linear acceleration along three 
axes. In addition to measuring linear acceleration, the otoliths measure the tilt of the head with respect to gravity.  

                    FIGURE 5.  The three parts of the ear      FIGURE 6.  The inner ear 
 

 Figure 6 shows just the inner ear and includes the cochlea, the 3 SCCs, and the utricle and saccule, which are the 
two otoliths, one sensing horizontal acceleration, and one sensing vertical acceleration.  These six inner ear organs 
open into the inner space of the inner ear termed the vestibule.  The inner part of the inner ear is filled with 
endolymph fluid which has properties similar to water.  A hard bone surrounds the inner ear and the only openings 
to the "outside" are two windows, the round window, which separates the air-filled middle ear from the endolymph 
fluid-filled inner ear by a thin membrane, and the oval window, which connects to the stapes, and also separates the 
inner ear from the middle ear by means of a thin membrane. Normally, the stapes bone causes motion in the 
endolymph fluid, and this pressure is relieved by the round window.  However, at the low frequencies we are 
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considering here, the middle ear will not be functioning as it does in the audible range, but the slowly varying 
pressures at 0.7 Hz will enter the middle ear through the eustachian tube and be transferred to the endolymph fluid 
through the windows. Thus there is a plausible path for the infrasound pressures to reach the inner ear.  

A model otolith is shown pictorially in Figure 7.  The otoconial layer is a rather dense and reasonably hard outer 
layer of the otolith.  It gets its density from embedded calcium carbonate crystals (otoconia).  The otoconial layer 
creates an inertial force when accelerated owing to its mass.  This force is transferred to the gel layer (cupular 
membrane) which then bends the hair cells causing them to transmit signals to the brain.  So the fundamental 
measurement by the otolith is the inertial force of the otoconial layer; the otolith is measuring force.  It remains to be 
determined exactly how pressure in the vestibule actually causes the hair cells to transmit a signal to the brain.   

In summary, what is being said is that the wind-turbine acoustic wave at the very low blade passage frequency 
appears to have a possible pathway to the sensors in the inner ear, and that the otoliths fundamentally are sensing 
pressure.  It is not yet clear how the pressure is transferred to otoliths so as to create shear forces in the cupular 
membrane.  Possibly, this pathway to the inner ear and the pressure response of the otoliths can be demonstrated and 
validated in the laboratory by measuring signals to the brain in some surrogate animal.  But the bottom line, which 
must be stressed, is that nobody knows what causes some people to get motion sickness, and what prevents most 
from getting motion sickness; likewise, we do not know why some people become sick from wind turbine 
emissions, and most others do not.  What we do know is that in both cases, the sickness is real for those who are 
sensitive, and that the model presented here has potential for explaining how some are affected. 

FIGURE 7.  Section of a model otolith organ 

CONCLUSIONS 

1. The Hessler and the Schomer goals for the A-weighted wind farm levels are virtually identical at 40 and 39 
dB, respectively.  Hessler, based mainly on extensive observations of community response from installed wind 
farms, suggests 45 dBA as a criterion or legal limit, while Schomer believes the limit should be quite close to 39 dB.  
In conclusion, the authors agree within about 2 dB that no extensive adverse response in the form of voiced 
annoyance is expected at low wind turbine levels; per Hessler these levels are low forties, e.g. 42 dB, and per 
Schomer, these levels are very low forties, e.g. 40 dB, at the closest residences.  The probability of complaints 
increases as the average level approaches 45 dBA. 

2. The authors agree that sleep disturbance issues should not be a problem as long as the outdoor criterion is met.  
3. The difference between quiet, rural A-weighted background levels and full power wind-turbine levels has been 

measured over seven months in a Western state and does not appear to be larger than 10 to 15dB so there is no basis 
for making the claim that wind-farms create a huge jump over the ambient.  

4. Schomer shows that it appears possible for the acoustic emission of a wind turbine to create a sense of motion 
in the human brain, but this appears to be documented at about 1% or less of wind farms, and only a small 
percentage of households (1 to 3 %) appear to be affected.  Research is clearly needed to understand why this small 
minority of wind farms exists, what makes them different, and what makes a small percentage of the population at 
these wind farms sensitive when most are not. 

5. Hessler shows that it is very easy to make a completely incorrect measurement (on the high side) of infrasound 
unless great care is taken to protect the measuring system from pseudo noise effects.   

6. Both Hessler and Schomer strongly agree and urge that research be undertaken for the explicit purpose of 
understanding the issues related to the very low-frequency acoustic emissions of wind turbines found to emit these 
very low frequencies including, but not limited to:  
 (1) How are these acoustic emissions generated? Under what weather conditions? etc. 
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 (2) Are these emissions unique to the N-100 or are they more widespread? If widespread, then the 
 knowledge gained on the generation of low-frequency acoustic emissions should be used as a starting point 
 in the development of a revised IEC Standard for the measurement of wind turbine emissions.  
 (3) What are the propagation characteristics of an acoustic wave in the two decades from 0.08 Hz to 8 Hz? 
 (4) How does the very low-frequency sound affect people?   
 (5) Why do some wind farms have health problems while most do not? 
 (6) Why are some people affected while most, apparently, are not? 
 (7) How can the health effects be mitigated or eliminated? 
 (8) Are there feasible wind turbine design and/or layout changes that can ameliorate the situation? 
 (9) Etc., etc., etc. 
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